Everyone says you should. BenchBox makes it easy to do. Use as CLI, Python library, or MCP for AI assistants. No Docker. No compilers. Just pip install.
# CLI - Quick benchmarking
benchbox run --platform duckdb --benchmark tpch
# MCP - AI assistant integration
"Run TPC-H on DuckDB" # Claude executes via MCP
# Library - Deep Python integration
from benchbox import TPCH
Minimal requirements. Python-only core with optional extras for cloud platforms. `pip install` and go.
TPC standards, academic (SSB, Join Order), industry (ClickBench, NYC Taxi), SQL primitives, and experimental workloads.
SQL databases (DuckDB, ClickHouse, cloud platforms) and DataFrame libraries (Polars, Pandas).
Automatic SQL translation. Same benchmark queries run on local and cloud databases.
10MB to 100TB! No need to download pre-generated files.
MCP server for Claude Code and AI assistants. Run benchmarks with natural language.
Official industry standards for comparing databases
Research benchmarks from academia
Real-world benchmarks from practitioners
Fundamental database operation testing
Experimental benchmarks for specialized testing
In-process and local columnar databases
Traditional relational databases
Enterprise cloud data warehouses and lakehouses
Distributed query engines for federated data
Cloud-managed Spark for lakehouse and data lake analytics
Optimized for time-stamped data
Native DataFrame APIs instead of SQL
Convert benchmark data to modern columnar formats for optimized storage, ACID transactions, and time travel capabilities.
Columnar storage for fast analytics
ACID transactions, time travel, and schema evolution
# Convert TPC-H data to different formats
benchbox convert --input ./tpch_sf1 --format parquet
benchbox convert --input ./tpch_sf1 --format delta
benchbox convert --input ./tpch_sf1 --format iceberg
benchbox convert --input ./tpch_sf1 --format ducklake
BenchBox includes an MCP (Model Context Protocol) server for Claude Code and other AI assistants. Run benchmarks with natural language instead of memorizing CLI flags.
claude mcp add benchbox -- uv run python -m benchbox.mcp
Natural language commands for benchmarking workflows
"What benchmarks are available?"
"Which platforms support TPC-DS?"
Explore 18 benchmarks and 38 platforms without reading documentation.
"Run TPC-H on DuckDB at scale 0.1"
"Compare Polars and Pandas on SSB"
Run benchmarks without memorizing CLI syntax or options.
"Which queries were slowest?"
"Compare results from my last two runs"
Get AI-powered analysis of performance patterns and regressions.
uv add benchbox
# Quick TPC-H benchmark on DuckDB
benchbox run --platform duckdb --benchmark tpch --scale 0.1
# Preview on cloud before spending credits
benchbox run --platform databricks --benchmark tpch --dry-run ./preview
from benchbox import TPCH
# Initialize and generate benchmark data
tpch = TPCH(scale_factor=0.1)
data_files = tpch.generate_data()
# Get schema and queries
create_sql = tpch.get_create_tables_sql()
query = tpch.get_query(1) # Q1: Pricing Summary Report